爱采购

发产品

  • 发布供应
  • 管理供应

惯性动作捕捉技术简述

   2012-11-19 转载于网络佚名4720
导读

一、动作捕捉理论概述:动作捕捉英文Motion capture,简称Mocap。技术涉及尺寸测量、物理空间里物体的定位及方位测定等方面可以由

一、动作捕捉理论概述:

动作捕捉英文Motion capture,简称Mocap。技术涉及尺寸测量、物理空间里物体的定位及方位测定等方面可以由计算机直接理解处理的数据。在运动物体的关键部位设置跟踪器,由Motion capture系统捕捉跟踪器位置,再经过计算机处理后向得到三维空间爱你坐标的数据。当数据被计算机识别后,可以应用在动画制作,步态分析,生物力学,人机工程等领域。

常用的运动捕捉技术从原理上说可分为惯性、光学式、声学式、电磁式。不同原理的设备各有其优缺点,一般可从以下几个方面进行评价:定位精度;实时性;使用方便程度;可捕捉运动范围大小;抗干扰性;多目标捕捉能力;以及与相应领域专业分析软件连接程度。

1、惯性式:主要工作原理是跟在人的身上主要的关键点绑定惯性陀螺仪,分析陀螺仪的位移变差来判定人的动作幅度和距离。

2、光学式: 光学式运动捕捉通过对目标上特定光点的监视和跟踪来完成运动捕捉的任务。目前常见的光学式运动捕捉大多基于计算机视觉原理。从理论上说,对于空间中的一个点,只要它能同时为两部相机所见,则根据同一时刻两部相机所拍摄的图像和相机参数,可以确定这一时刻该点在空间中的位置。当相机以足够高的速率连续拍摄时,从图像序列中就可以得到该点的运动轨迹。

3、声学式:常用的声学式运动捕捉装置由发送器、接收器和处理单元组成。发送器是一个固定的超声波发生器,接收器一般由呈三角形排列的三个超声探头组成。通过测量声波从发送器到接收器的时间或者相位差,系统可以计算并确定接收器的位置和方向。Logitech、SAC等公司都生产超声波运动捕捉设备。

4、电磁式:电磁式运动捕捉系统是目前比较常用的运动捕捉设备。一般由发射源、接收传感器和数据处理单元组成。发射源在空间产生按一定时空规律分布的电磁场;接收传感器(通常有10~20个)安置在表演者身体的关键位置,随着表演者的动作在电磁场中运动,通过电缆或无线方式与数据处理单元相连。

二、惯性动作捕捉:

要了解惯性动作捕捉,我们就要首先了解它的重要部件—陀螺仪

陀螺仪简介:

绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。 由苍蝇后翅(特化为平衡棒)仿生得来。在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例。

人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。

陀螺仪结构 
陀螺仪结构

结构

基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。

历史

1850年法国的物理学家莱昂•傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。

陀螺仪原理

陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。

陀螺仪特性

陀螺仪被广泛用于航空、航天和航海领域。这是由于它的两个基本特性:一为定轴性(inertia or rigidity),另一是进动性(precession),这两种特性都是建立在角动量守恒的原则下。

定轴性

当陀螺转子以高速旋转时,在没有任何外力矩作用在陀螺仪上时,陀螺仪的自转轴在惯性空间中的指向保持稳定不变,即指向一个固定的方向;同时反抗任何改变转子轴向的力量。这种物理现象称为陀螺仪的定轴性或稳定性。其稳定性随以下的物理量而改变:

1、转子的转动惯量愈大,稳定性愈好;
2、转子角速度愈大,稳定性愈好。

所谓的“转动惯量”,是描述刚体在转动中的惯性大小的物理量。当以相同的力矩分别作用于两个绕定轴转动的不同刚体时,它们所获得的角速度一般是不一样的,转动惯量大的刚体所获得的角速度小,也就是保持原有转动状态的惯性大;反之,转动惯量小的刚体所获得的角速度大,也就是保持原有转动状态的惯性小。

进动性

当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内环轴转动;若外力矩作用于内环轴,陀螺仪将绕外环轴转动。其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫做陀螺仪的进动性。进动角速度的方向取决于动量矩H的方向(与转子自转角速度矢量的方向一致)和外力矩M的方向,而且是自转角速度矢量以最短的路径追赶外力矩。如下图。

进动角速度的方向 
进动角速度的方向

这可用右手定则判定。即伸直右手,大拇指与食指垂直,手指顺着自转轴的方向,手掌朝外力矩的正方向,然后手掌与4指弯曲握拳,则大拇指的方向就是进动角速度的方向。进动角速度的大小取决于转子动量矩H的大小和外力矩M的大小,其计算式为 =M/H。

进动性的大小也有三个影响的因素:

1、外界作用力愈大,其进动角速度也愈大;
2、转子的转动惯量愈大,进动角速度愈小;
3、转子的角速度愈大,进动角速度愈小。

陀螺仪功能分类

利用陀螺仪的动力学特性制成的各种仪表或装置,主要有以下几种:

①陀螺方向仪

能给出飞行物体转弯角度和航向指示的陀螺装置。它是三自由度均衡陀螺仪,其底座固连在飞机上,转子轴提供惯性空间的给定方向。若开始时转子轴水平放置并指向仪表的零方位,则当飞机绕铅直轴转弯时,仪表就相对转子轴转动,从而能给出转弯的角度和航向的指示。由于摩擦及其他干扰,转子轴会逐渐偏离原始方向,因此每隔一段时间(如15分钟)须对照精密罗盘作一次人工调整。

②陀螺罗盘

供航行和飞行物体作方向基准用的寻找并跟踪地理子午面的三自由度陀螺仪。其外环轴铅直,转子轴水平置于子午面内,正端指北;其重心沿铅垂轴向下或向上偏离支承中心。转子轴偏离子午面时同时偏离水平面而产生重力矩使陀螺旋进到子午面,这种利用重力矩的陀螺罗盘称摆式罗盘。近年来发展为利用自动控制系统代替重力摆的电控陀螺罗盘,并创造出能同时指示水平面和子午面的平台罗盘。

③陀螺垂直仪

陀螺垂直仪 
陀螺垂直仪

利用摆式敏感元件对三自由度陀螺仪施加修正力矩以指示地垂线的仪表,又称陀螺水平仪。陀螺仪的壳体利用随动系统跟踪转子轴位置,当转子轴偏离地垂线时,固定在壳体上的摆式敏感元件输出信号使力矩器产生修正力矩,转子轴在力矩作用下旋进回到地垂线位置。陀螺垂直仪是除陀螺摆以外应用于航空和航海导航系统的又一种地垂线指示或量测仪表。

④陀螺稳定器

稳定船体的陀螺装置。20世纪初使用的施利克被动式稳定器实质上是一个装在船上的大型二自由度重力陀螺仪,其转子轴铅直放置,框架轴平行于船的横轴。当船体侧摇时,陀螺力矩迫使框架携带转子一起相对于船体旋进。这种摇摆式旋进引起另一个陀螺力矩,对船体产生稳定作用。斯佩里主动式稳定器是在上述装置的基础上增加一个小型操纵陀螺仪,其转子沿船横轴放置。一旦船体侧倾,小陀螺沿其铅直轴旋进,从而使主陀螺仪框架轴上的控制马达及时开动,在该轴上施加与原陀螺力矩方向相同的主动力矩,借以加强框架的旋进和由此旋进产生的对船体的稳定作用。

⑤速率陀螺仪

速率陀螺仪 
速率陀螺仪

用以直接测定运载器角速率的二自由度陀螺装置。把均衡陀螺仪的外环固定在运载器上并令内环轴垂直于要测量角速率的轴。当运载器连同外环以角速度绕测量轴旋进时,陀螺力矩将迫使内环连同转子一起相对运载器旋进。陀螺仪中有弹簧限制这个相对旋进,而内环的旋进角正比于弹簧的变形量。由平衡时的内环旋进角即可求得陀螺力矩和运载器的角速率。积分陀螺仪与速率陀螺仪的不同处只在于用线性阻尼器代替弹簧约束。当运载器作任意变速转动时,积分陀螺仪的输出量是绕测量轴的转角(即角速度的积分)。以上两种陀螺仪在远距离测量系统或自动控制、惯性导航平台中使用较多。

⑥陀螺稳定平台

以陀螺仪为核心元件,使被稳定对象相对惯性空间的给定姿态保持稳定的装置。稳定平台通常利用由外环和内环构成制平台框架轴上的力矩器以产生力矩与干扰力矩平衡使陀螺仪停止旋进的稳定平台称为动力陀螺稳定器。陀螺稳定平台根据对象能保持稳定的转轴数目分为单轴、双轴和三轴陀螺稳定平台。陀螺稳定平台可用来稳定那些需要精确定向的仪表和设备,如测量仪器、天线等,并已广泛用于航空和航海的导航系统及火控、雷达的万向支架支承。根据不同原理方案使用各种类型陀螺仪为元件。其中利用陀螺旋进产生的陀螺力矩抵抗干扰力矩,然后输出信号控、照相系统。

现代陀螺仪

现代陀螺仪 
现代陀螺仪

现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年 等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。

现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。

陀螺仪的基本类型

根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有:三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型:

1、速率陀螺仪(它使用的反作力矩是弹性力矩);
2、积分陀螺仪(它使用的反作用力矩是阻尼力矩);
3、无约束陀螺(它仅有惯性反作用力矩);

现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。

二自由度陀螺仪的基本特性

二自由度陀螺仪的转子支承在一个框架内,没有外框架,因而转子自转有一个进动自由度,即少了垂直于内框架轴和自转轴方向的转动自由度。因此二自由度陀螺仪与三自由度陀螺仪的特性也有所不同。进动性是三自由度陀螺仪的基本特性之—,当绕内框架轴作用外力矩时,将使高速旋转的转子自转轴产生绕外框架轴的进动,而绕外框架轴作用外力矩时,将使转子轴产生绕内框架轴的进动。

定轴性是三自由度陀螺仪的另一基本特性。无论基座绕陀螺仪自转轴转动,还是绕内框架轴或外框架轴方向转动,都不会直接带动陀螺转子一起转动(指转子自转之外的转动)。由内、外框架所组成的框架装置,将基座的转动与陀螺转子隔离开来。这样,如果陀螺仪自转轴稳定在惯性空间的某个方位上,当基座转动时,它仍然稳定在原来的方位上。

对于二自由度陀螺仪,当基座绕陀螺仪自转轴或内框架轴方向转动时,仍然不会带动转子一起转动,即内框架仍然起隔离运动的作用。但是,当基座绕陀螺仪缺少自由度的x轴方向以角速度ωx转动时,由于陀螺仪绕该轴没有转动自由度,所以基座转动时,就通过内框架轴上的一对支承带动陀螺转子一起转动。但陀螺仪自转轴仍尽力保持其原来的空间方位不变。因此,基座转动时,内框架轴上的一对支承就有推力F作用在内框架轴的两端,而形成作用在陀螺仪上的推力矩mx, 其方向垂直于动量矩H,并沿x铀正向。由于陀螺仪绕内框架轴有转动的自由度,所以这个推力矩就使陀螺仪产生绕内框架轴的进动,进动角速度β指向内框架轴y的正向,使转子轴趋向与x轴重合。

因此,当基座绕陀螺仪缺少自由度的方向转动时,将强迫陀螺仪跟随基座转动,同时陀螺仪转子轴绕内框架轴进动。结果使转子轴趋向与基座转动角速度的方向重合。即二自由度陀螺仪具有敏感绕其缺少转动自由度方向旋转角速度的特性。二自由度陀螺仪受到沿内框架轴向外力矩作用时,转子轴绕内框轴运动。沿内框架轴向作用力矩时转子轴的运动。设沿内框架铀y的正向有外力矩My作用,则二自由度陀螺仪的转子轴将力图以角速度My/H绕x轴的负向进动,如图3所示。由于陀螺转子轴绕x轴方向不能转动,这个进动是不可能实现的。但其进动趋势仍然存在,并对内框架轴两端的支承施加压力,这样,支承就产生约束反力F作用在内框架轴两端,而形成作用在陀螺仪上的约束反力矩mx,其方向垂直于动量矩H并沿x轴的正向。由于转子轴绕内框架轴存在转动自由度,所以在这个约束反力矩mx的作用下,陀螺仪转子轴就绕内框架轴以β的角速度沿y轴正向进动。简单地说,如果陀螺绕x轴方向不能转动,那么在绕内框架轴向的外力矩作用下,陀螺仪的转子轴也绕内框架轴转动。陀螺绕主轴转动的角动量以H表示,H=JsΩ,式中Js为陀螺转子的转动惯量。

了解完陀螺仪后我们来了解一下一个惯性动作捕捉包含几个部分:

a) 传感器

所谓传感器是固定在运动物体特定部位的跟踪装置,它将向动作捕捉系统提供运动物体运动的位置信息,一般会随着捕捉的细致程度确定跟踪器的数目(陀螺仪)。

b) 信号捕捉设备

这种设备会因动作捕捉系统的类型不同而有所区别,它们负责位置信号的捕捉。

c) 数据传输设备

动作捕捉系统,特别是需要实时效果的动作捕捉系统需要将大量的运动数据从信号捕捉设备快速准确地传输到计算机系统进行处理,而数据传输设备就是用来完成此项工作的。

d) 数据处理设备

经过动作捕捉系统捕捉到的数据需要修正、处理后还要有三维模型向结合才能完成计算机动画制作的工作,这就需要我们应用数据处理软件或硬件来完成此项工作。软件也好硬件也罢它们都是借助计算机对数据高速的运算能力来完成数据的处理,使三维模型真正、自然地运动起来。

惯性动作捕捉的应用:

虚拟现实系统

为实现人与虚拟环境及系统的交互,必须确定参与者的头部、手、身体等的位置与方向,准确地跟踪测量参与者的动作,将这些动作实时检测出来,以便将这些数据反馈给显示和控制系统。这些工作对虚拟现实系统是必不可少的,这也正是运动捕捉技术的研究内容。

机器人遥控

机器人将危险环境的信息传送给控制者,控制者根据信息做出各种动作,运动捕捉系统将动作捕捉下来,实时传送给机器人并控制其完成同样的动作。与传统的遥控方式相比,这种系统可以实现更为直观、细致、复杂、灵活而快速的动作控制,大大提高机器人应付复杂情况的能力。在当前机器人全自主控制尚未成熟的情况下,这一技术有着特别重要的意义。

互动式游戏

可利用运动捕捉技术捕捉游戏者的各种动作,用以驱动游戏环境中角色的动作,给游戏者以一种全新的参与感受,加强游戏的真实感和互动性。

体育训练

运动捕捉技术可以捕捉运动员的动作,便于进行量化分析,结合人体生理学、物理学原理,研究改进的方法,使体育训练摆脱纯粹的依靠经验的状态,进入理论化、数字化的时代。还可以把成绩差的运动员的动作捕捉下来,将其与优秀运动员的动作进行对比分析,从而帮助其训练。

另外,在人体工程学研究、模拟训练、生物力学研究等领域,运动捕捉技术同样大有可为。

可以预见随着技术本身的发展和相关应用领域技术水平的提高,运动捕捉技术将会得到越来越广泛的应用。

 
反对 0举报 0 收藏 0 打赏 0评论 0
免责声明
• 
本文为佚名原创作品,作者: 佚名。欢迎转载,转载请注明原文出处:http://www.quanxiwang.com/news/show-3995.html 。本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们。
 
更多>同类资讯头条

入驻

企业入驻成功 可尊享多重特权

入驻热线:18682138895

请手机扫码访问

客服

客服热线:18682138895

小程序

小程序更便捷的查找产品

为您提供专业帮买咨询服务

请用微信扫码

公众号

微信公众号,收获商机

微信扫码关注

顶部